Madonado 1170 - Montevideo, Uruguay
Tel.: (598) 2901 3987   Fax: (598) 2900 0582

Es bastante extendido que el trabajo con las operaciones en la escuela debería abordar diferentes aspectos que favorecen la construcción del sentido de las mismas. Según Rodríguez Rava (2005), estos aspectos son los significados de las operaciones, las relaciones entre las operaciones, las relaciones entre las operaciones y el Sistema de Numeración Decimal, las propiedades, las prelaciones entre estas propiedades, el cálculo, los algoritmos, la resignificación de las operaciones en los diferentes conjuntos numéricos, y la notación de las operaciones.

En el artículo e intentamos resumir los problemas que implican división entre naturales, cuando el dividendo y el divisor no sean múltiplos, se resuelven con división entera (con resto), con división exacta (cociente decimal) o no tienen solución. Realizamos un recorrido por problemas con división, focalizando la atención en los números involucrados e intentando analizar como, en algunos casos, estos permiten ampliar la mirada sobre los
significados, esperando aportar a la construcción del sentido de las operaciones.

Publicado en Revista 141

¿A qué hacemos referencia cuando decimos aprender a dividir y a multiplicar con alumnos del siglo XXI?
Aprender la multiplicación y la división implica ser capaz de utilizarlas en diferentes situaciones, relacionarlas, “poner en juego” algunas de sus propiedades, establecer vínculos con el sistema de numeración, tener a disposición un repertorio de cálculo amplio y resolver el algoritmo.
Su enseñanza encierra, entonces, una serie de aspectos todos importantes y necesarios, que requieren de la planificación de un recorrido didáctico
pleno en desafíos que habilite, tal como lo plantea Kincheloe (2001) –adhiriéndose al pensamiento de Gregory Bateson– “la danza de las partes interconectadas”.
Habitualmente se pensaba que la multiplicación y la división eran contenidos propios de segundo grado, y su enseñanza estaba centrada en los algoritmos y en las tablas. En otro momento, si bien se mantuvo el foco en la resolución de la “cuenta”, a partir de distintas investigaciones se
generalizó la idea de que era el niño quien debía desarrollar estrategias propias para resolver situaciones de multiplicación y de división, restándole
importancia al algoritmo convencional. Lo importante era que pudiera dividir o multiplicar.

En este artículo nos proponemos centrar la mirada en las intervenciones que debe realizar el docente para hacer evolucionar esas estrategias
primarias de resolución –muy ligadas a la situación que las origina– hacia otros procedimientos más generales, menos transparentes, a los que el alumno pueda recurrir cualquiera sea la situación planteada. Nos interesa potenciar la resolución de situaciones de división a través de procedimientos comprendidos por quienes los lleven a cabo, de manera que esas estrategias resulten verdaderas herramientas en las que se pone en juego el pensar numéricamente.

Publicado en Revista 139

Cuando examinamos la enseñanza de la matemática resulta evidente la preponderancia de la transmisión de una serie de pasos para resolver
diferentes ejercicios, donde se prioriza el resultado, la respuesta correcta que, desde nuestro punto de vista, es importante pero no suficiente
para aprender matemática.
Parecería que los algoritmos son la puerta de entrada a los contenidos matemáticos. Si consideramos que: «Hacer matemáticas es
un trabajo del pensamiento que construye los conceptos para resolver problemas, que plantea nuevos problemas a partir de conceptos así
construidos, que rectifica los conceptos para resolver problemas nuevos, que generaliza y unifica poco a poco los conceptos en los universos
matemáticos que se articulan entre ellos, se estructuran, se desestructuran y se reestructuran sin cesar» (Charlot, 1986), los algoritmos conforman una pequeña parte del aprendizaje de la matemática en la escuela, y la potencialidad de ellos radica en poder establecer relaciones y entender su funcionamiento en relación a las razones matemáticas que los sustentan.

La enseñanza de los algoritmos no solo implica saber el mecanismo, sino establecer las relaciones internas, su funcionamiento así como otros aspectos que son esenciales para la construcción del sentido de las operaciones.

Publicado en Revista 130
Sábado, 12 Noviembre 2016 16:55

Operaciones con "significado"

La enseñanza de las operaciones ha sido y continúa siendo una preocupación para los maestros de Educación Primaria. Sin embargo, en muchos casos esta preocupación se centra y se reduce al aspecto mecánico del algoritmo. En el discurso de los maestros, aún hoy es posible encontrar expresiones que dan cuenta de la reducción de la operación al algoritmo. Incluso reconociendo la necesidad de abordar los distintos significados de las operaciones, al analizar sus planificaciones hay quienes encuentran que han focalizado un único significado en variadas ocasiones.
Con respecto al orden de aparición de las operaciones en el ciclo escolar, parecería que la enseñanza de la división y de la multiplicación se realiza con posterioridad a la de la suma y la resta.
Una posible explicación que busca fundamentar esta práctica es que para abordar la multiplicación y la división es necesario consolidar previamente ciertas nociones numéricas.
Otra creencia muy extendida entre los docentes es pensar que la responsabilidad de la enseñanza de las operaciones está en las clases de los primeros niveles. De esta manera se instala en el imaginario docente la idea de que, llegados a los grados superiores, los niños “dominan los algoritmos”. 

Al respecto, se desprenden algunos interrogantes: operaciones y algoritmos, ¿son sinónimos? ¿Es suficiente dominar el algoritmo para poder utilizarlo en la resolución de problemas? ¿Es posible depositar la responsabilidad de la enseñanza de las operaciones en un nivel o bien debería ser producto del trabajo sistemático, coordinado y secuenciado a lo largo de todos los años de escolaridad?

Publicado en Revista 118

La Enseñanza de la resta. En primero: ¿solo se puede aprender a "perder"?

Autor: Andrea Di Biase, Andrés Ambrosio

Concepto: En el marco de las tareas emprendidas por el equipo de investigación en Didáctica de la Matemática de la Revista QUEHACER  EDUCATIVO, se ha podido observar con frecuencia que los maestros de enseñanza primaria, de los primeros años, priorizan los algoritmos convencionales de cálculos escritos  cuando se les pregunta acerca de aquellos aspectos importantes  de las operaciones. Pocas veces nos detenemos a estudiar y reflexionar acerca de las relaciones matemáticas que los alumnos deben poner en juego para resolver ciertos problemas. De esta manera los autores intentan abordar el problema de los significados más naturales de la resta y las relaciones matemáticas en ellas involucradas, así como también la cuestión de su reforzamiento desde la enseñanza.

Revista Nº 89
Junio de 2008
Descargar

Suscripción a la revista

Completa el formulario, y suscribite a la revista QUEHACER EDUCATIVO

Suscripción