# El Modelo Corpuscular de la Materia en la escuela

Seguimos pensando que se puede

María Dibarboure | Doctoranda en Psicología. Magíster en Psicología Cognitiva y Aprendizaje (UAMadrid).

Especialista en Didáctica de las Ciencias. Especialista en Constructivismo y Educación (FLACSO).

#### Introducción

El presente artículo resume y amplía algunas ideas respecto al Modelo Corpuscular de la Materia, su aprendizaje y su enseñanza, que pudieron ser expresadas en varios números de esta revista. Pretende ser un material que dé fundamento a los diferentes trabajos que el equipo de investigación de la revista viene realizando respecto a este contenido, y al mismo tiempo dé referencia para quienes trabajen con y sobre él. En las premisas de partida señalaremos aspectos que entendemos deben tenerse en cuenta desde la perspectiva del aprendizaje y desde la enseñanza para cualquier contenido de ciencias, para luego remitirnos a las especificidades del modelo.

#### Premisas de partida

## 1.- Aprender ciencias naturales. Síntesis de supuestos

Desde hace mucho tiempo se entiende que la comprensión de la naturaleza requiere de la formación de un espíritu que tiene como primer obstáculo la experiencia básica. Un clásico como Gaston Bachelard explicita que lo que percibimos, lo que nos rodea y forma nuestra vida cotidiana se constituye en una barrera para comprender los enunciados de la ciencia.

Para este autor es necesaria la formación de un espíritu científico a partir del cual poder comprender no solo los supuestos de la ciencia, sino también sus formas de hacer.

«...el espíritu científico debe formarse en contra de la Naturaleza, en contra de lo que es, dentro y fuera de nosotros, impulso y enseñanza de la Naturaleza, en contra del entusiasmo natural, en contra del hecho coloreado y vario.» (Bachelard, 1994:27)

Los conocimientos científicos, son construcciones teóricas que permiten explicar fenómenos y situaciones desde diferentes dimensiones. Pensar la educación científica sin considerar los obstáculos propios de esas construcciones puede entenderse como deshonesta y éticamente cuestionable. Por tal razón afirmamos que es necesaria una enseñanza debidamente planificada desde las dificultades que trae consigo el conocimiento a enseñar.

«El saber de la ciencia no es un saber que se puede conseguir con la simple experiencia... sino que se debe ofrecer mediante una enseñanza cuidadosamente programada porque las escuelas siguen siendo el principal agente de reproducción cultural.» (Osborne, 2002:44) No son esas las únicas dificultades. Existen otras que refieren a *nuestra manera de procesar* el mundo que nos rodea. Desde pequeños, los humanos vamos construyendo una imagen del mundo guiada por la experiencia. Esa imagen se sostiene con ideas que se han ido consolidando en la medida en que han funcionado. Tienen una larga historia filogenética y cultural, que las hace muy eficaces en el mundo cotidiano.

Las dificultades en el aprendizaje de las ciencias a menudo se atribuyeron a que era necesario un determinado estado evolutivo para su comprensión. Antes de la década de los ochenta, remitirse a la perspectiva evolutiva era remitirse a la teoría de Piaget. Según él, los niños pasan por estados de desarrollo que les permiten realizar determinadas operaciones de pensamiento, hasta llegar al pensamiento formal necesario para posibilitar la comprensión de los contenidos disciplinares de las ciencias naturales. Lo particular de estas ideas es que, para Piaget, era prácticamente imposible acelerar ese proceso natural. Hoy se manejan otras concepciones respecto a la relación aprendizaje-desarrollo que provienen de los enfoques socioculturales. En ese marco, el aprendizaje organizado pone en marcha el desarrollo mental que no se daría al margen del aprendizaje.

«La educación, por su parte, puede ser definida como el desarrollo artificial del niño. La educación es el dominio ingenioso de los procesos naturales de desarrollo. La educación no sólo influye sobre unos u otros procesos del desarrollo, sino que reestructura, de la manera más esencial, todas las funciones de la conducta.» (Vigotsky, 1987:87 apud Baquero, 1997:105)

Las posturas socioculturales son esperanzadoras respecto al aprendizaje en ciencias en la medida en que flexibilizan el problema de los estadios evolutivos del desarrollo y nos ubican el escenario cognitivo en otro lugar.

Para que el aprendizaje sea posible con el consiguiente desarrollo de quien aprende, es necesario un *reformateo cognitivo*, según Pozo y Gómez Crespo (2002). El sistema operativo de la mente de los estudiantes debe modificarse para que pueda ser compatible con los principios en los que se basa el conociendo científico.

La comprensión de la ciencia requiere así una mente humana con nuevos formatos representacionales. Los programas de la ciencia no corren si no hay reformateo y esto es posible, aunque no seguro, con una enseñanza deliberada, cuidada, pensada desde estas dificultades. Las capacidades necesarias para la comprensión de los enunciados científicos no son naturales y deben desarrollarse. Dicho de una manera sencilla: es necesario dar posibilidades mediante la intervención que supone la enseñanza para que el pensamiento científico pueda desarrollarse.

«Frente a quienes creen que las formas de hacer y pensar de la ciencia no son sino una prolongación de la forma natural y espontánea en que los seres humanos nos enfrentamos al mundo, que los niños y también los adultos resuelven sus problemas como científicos intuitivos (...), de forma que la mente del niño y del científico están formateadas de la misma manera, nosotros pensamos que la ciencia requiere nuevos formatos representacionales para la mente humana, de modo que los programas de la ciencia no corren en la mente humana si ésta no se reestructura –o no se reformatea– y que esto sólo es posible, aunque no probable, a través de una instrucción cuidadosamente diseñada...» (Pozo y Gómez Crespo, 2002:237)

#### 2.- Enseñanza de las ciencias. Otros supuestos

Uno de los desafíos de la escuela relacionados con las Ciencias Naturales, es que la transformación (transposición didáctica) de los saberes de la ciencia de los expertos en los actos de enseñanza con el fin de que pueda tener lugar el aprendizaje de los niños, se realice sin que ese conocimiento pierda *su esencia*. Con ese fin, entre sus tareas, el docente tiene el análisis del contenido para la planificación de la enseñanza.

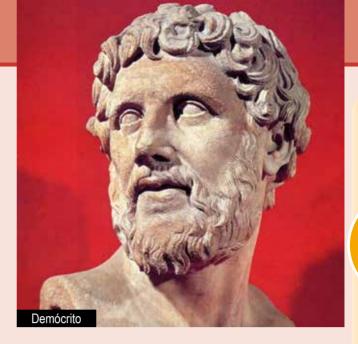
A consecuencia de lo anterior, analizar y reflexionar sobre los contenidos de enseñanza es una tarea clave de la función docente. Ese análisis ayuda a entender la naturaleza y complejidad de los contenidos que tratan de enseñarse, fuerza a hacer explícitos los criterios implícitos que se tienen respecto al por qué, qué y cuándo

# El Modelo Corpuscular de la Materia en la escuela

enseñarlos, ayuda a comprender su sentido y a estructurarlos de una forma lógica y racional; permite generar criterios que mejoren la coherencia y la progresión de las secuencias de enseñanza, ayuda a seleccionar las actividades más adecuadas, y a centrar los procesos de enseñanza de manera de generar mejores posibilidades de encuentro cognitivo con los estudiantes y su aprendizaje.

Con la reflexión sobre los contenidos y delineados los aspectos *del saber a enseñar* bajo los supuestos anteriores, el docente debe pensar en las actividades a implementar para interactuar y mediar ante sus alumnos.

Respecto al modelo de enseñanza, desde la década de los ochenta y sostenido con aportes de la filosofía de la ciencia y de la psicología del aprendizaje, se sugiere que la *indagación escolar* puede ser un principio didáctico válido para pensar la enseñanza (Dibarboure, 2016; Furman, 2016).


La clave del modelo es la generación de conflicto, la promoción de desequilibrio. Se trata de crear situaciones de enseñanza que generen la necesidad de ideas nuevas para poder comprender lo que se está estudiando.

#### El Modelo Corpuscular de la Materia (MCM)<sup>1</sup>

#### Lo que la ciencia dice del MCM

«Ninguna de las ideas de la Antigüedad (...) tuvo mayor o parecida fortuna.» (Papp, 1996:262)

«Si por algún cataclismo todo el conocimiento quedara destruido y solo una idea pudiera pasar a las generaciones venideras, ¿qué enunciado tendría la máxima información en menos palabras? Yo creo que es la hipótesis atómica, según la cual todas las cosas están hechas de átomos: pequeñas partículas en movimiento perpetuo que se atraen cuando están a poca distancia y que se repelen al ser apretadas unas contra otras.» (Feynman apud Prieto y Blanco, 2000:75)



Desde muy temprano en la historia, el hombre se ha planteado cómo se compone el mundo material. Se cree que la idea de que todo está constituido por pequeñas entidades no visibles surge con los griegos en el siglo v a. C., y que fue Demócrito el que la expuso denominando átomos a dichas entidades. La palabra átomo significa no divisible y esto supone que en la concepción de dichas entidades estaba la idea de que no se podían dividir.

No sabemos cómo Demócrito llegó a la idea, ya que la mayoría de sus escritos fueron quemados por orden de Platón. De todos modos existe una manera lógica, según Desiderio Papp, para imaginarnos un posible razonamiento que une la idea de materia, vacío y movimiento, y que explicaría el porqué de la diversidad del mundo material que percibimos. Este autor dice que si tomáramos una hoja de cuchillo afilada y cortáramos en láminas muy finitas cualquier material, podríamos hacerlo hasta que no pudiéramos cortarlo más. Es en ese momento en el que nos toparíamos con un átomo de dicho material.

El material estaría así constituido por vacío en la medida en que puedo producir el corte, y átomos en la medida en que llega un punto en el que no puedo cortar más. Los átomos aparecen de este modo en escena, como increados, invisibles, indestructibles y en cantidades infinitas. Por yuxtaposición, los átomos forman la materia macroscópica que percibimos; y desde esta idea, las propiedades de los cuerpos son debidas a la posición, a la forma y al tamaño de los átomos. En permanente movimiento en el vacío conforman la gran variedad de fenómenos en la naturaleza.

<sup>&</sup>lt;sup>1</sup>Adaptado del Capítulo 3 de Dibarboure (2009).

Como plantea la cita que introduce este párrafo, no ha existido idea que se haya mantenido más en el tiempo. Claro que la noción que tenemos hoy sobre el átomo es bien distinta a la que expone Demócrito, pero lo que no deja de sorprender es que la idea como tal se mantiene hasta nuestros días.

«Tito Lucrecio Caro (94-51 a. C.) De rerum natura. Libro I.

...no todo está en todas partes ocupado por materia compacta; pues dentro de las cosas existe vacío. Es este un conocimiento que te será útil en muchos aspectos y no dejará que te pierdas en dudas (...) Existe un espacio impalpable, vacío. Que si no existiera, de ningún modo podrían moverse las cosas; pues la función de la propia materia, esto es chocar y ofrecer resistencia, actuaría a cada momento en todo objeto; ninguno podría, por tanto avanzar pues ninguno empezaría a ceder ante otro. Pero en realidad vemos, por mar y tierra y por las alturas del cielo, mil cuerpos moviéndose ante nuestros ojos, de muchas maneras en diversos sentidos; los cuales si no existiera el vacío, no solo estarían privados de esta moción incesante, sino que jamás hubieran podido ser engendrados, pues la materia apiñada en todos los puntos, estaría inmóvil...» (Sánchez Ron, 2000:34)

La idea no fue valorada en su momento y recién reconsiderada en el siglo XVII. A principios del siglo XIX, la Química comienza a desarrollarse como disciplina y con ella la idea se *complejiza*. El átomo ya no es indivisible, y lo define un mundo de partículas en movimiento en su interior.

#### Del MCM a su versión escolar (MCME)

Sabemos de posturas que cuestionan el tratamiento de la estructura de la materia en el ámbito escolar, y de colegas que entienden que no es pertinente por el grado de abstracción que ello requiere. Al mismo tiempo, el programa escolar uruguayo actual lo presenta como un contenido a ser trabajado en los niveles superiores.

Fieles a las ideas que hemos expuesto en otros materiales (Dibarboure 2007, 2009, 2010, 2011, 2013) sí lo creemos pertinente, aunque con una adecuación a lo presentado en el programa escolar.

Sostenemos que es necesario hacer ver a los niños que la imaginación ha sido parte de la construcción del conocimiento científico de hoy, y que las ideas, son propuestas por personas que son capaces de imaginar con cierta lógica. No estamos diciendo enseñar a los escolares las nociones que derivan de la mecánica cuántica, no estamos hablando de átomos, ni de moléculas, ni de las partículas.

El Programa de Educación Inicial y Primaria. Año 2008 sí trabaja con átomos y moléculas, cuestión que reiteradamente no hemos compartido y así lo hemos expresado públicamente. Creemos que es necesario construir primero la idea de corpúsculo, de manera de poder avanzar en la complejidad del modelo. Incluso entendemos que esa complejidad debe aparecer en el escenario escolar por necesidad, y no porque desde la planificación así se establezca. La complejidad de la temática dará lugar a confusiones respecto a saber en cada caso si estamos frente a sustancias de constitución atómica o molecular.

Lo que estamos proponiendo es recuperar aquella originaria idea, *un mundo formado por corpúsculos en permanente movimiento que no se pueden ver*. Desde esta postura, el corpúsculo es la entidad microscópica.

Sin quitar la complejidad que supone admitir la existencia de entidades no perceptibles, adaptamos el modelo que la comunidad científica ha propuesto para la materia, con la finalidad de ser planteado en términos escolares (MCME).

# Lo que plantean las investigaciones: concepciones sobre la materia y orientaciones para su enseñanza

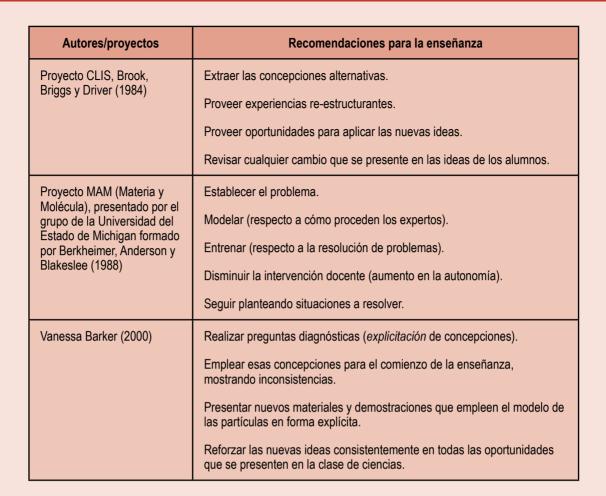
Son muchos los estudios que refieren a cómo los niños y especialmente los jóvenes piensan sobre la composición interna de la materia. En su mayoría, el propósito ha sido la descripción de las ideas intuitivas que surgen ante diferentes situaciones vinculadas a la temática. En otros casos, se busca evaluar si las ideas intuitivas son modificadas después del tratamiento del tema.



Trinidad-Velasco y Garritz (2003:94) realizan una revisión bibliográfica que muestra la importancia que ha adquirido la temática para los investigadores: Novick y Nussbaum (1978, 1981); Nussbaum y Novick (1982); Nussbaum (1985); Llorens (1988); Andersson (1990); Renström, Andersson y Marton (1990); Haidar y Abraham (1991); Gabel y Bunce (1994); de Vos y Verdonk (1996); Pozo, Gómez y Sanz (1999); Benarroch (2000a, 2000b, 2001); Gallegos (2002). Es necesario señalar que los propósitos de esas investigaciones son indagar sobre *las representaciones* que tienen los sujetos de diferentes niveles (en general, las muestras estudiadas responden a alumnos de diez a dieciséis años).

Los resultados de las investigaciones interpelan a la enseñanza y desafían a buscar estrategias nuevas y más eficaces. En esa época aparece la noción de *acontecimiento discrepante* como aquel que mirado desde la enseñanza, es capaz de generar el conflicto entre las representaciones implícitas y la situación elegida (Nussbaum, 1989).

En ese mismo año, Rosalind Driver, también investigadora referente, da cuenta de estudios realizados con niños entre once y dieciséis años de diferentes países: Gran Bretaña, Francia, Suecia y Nueva Zelanda. A pesar de las diferencias lingüísticas y de los programas de ciencias que pudieron tener en su formación, la autora estudia nociones sobre cambios de estado, disolución y combustión. Concluye que la mayoría de los estudiantes admiten la existencia de las partículas (corpúsculos) pero no pueden despegarse de las evidencias macroscópicas, atribuyéndoles a las partículas los cambios que se perciben microscópicamente.

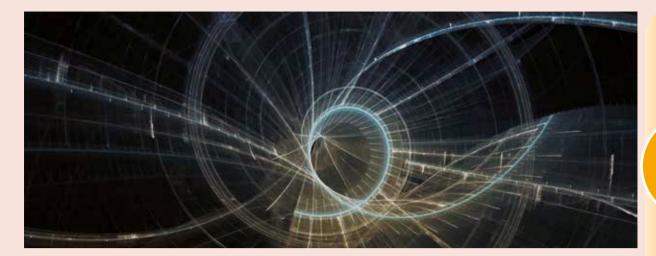

Más adelante, Driver et al. describen con más especificidad un conjunto de investigaciones

que permiten concluir la tendencia de que los alumnos consideran que los átomos son como pequeños trozos de sólido o de líquido, idea que según estos autores «puede considerarse en viaje desde una visión continua (no corpuscular) de la materia hasta una visión de ella atomística científica» (Driver et al., 1999:127). Esta idea se explicita en un estudio interesante sobre el dibujo de un cristal de azúcar, indagación que se realiza a una muestra de seiscientos alumnos, cuyas edades van de ocho a diecisiete años. Algo similar ocurre con las ideas sobre los líquidos. Por su parte, Montse Benlloch explicita que el estado gaseoso es el estado más elegido por los investigadores, «entre otras razones porque estudiar la conducta cinética en los gases no exige vencer ninguna resistencia contraintuitiva, puesto que no se percibe la continuidad del gas del mismo modo que se percibe la continuidad de los sólidos y de los líquidos» (Benlloch, 1997:85).

Conocer las representaciones implícitas respecto al interior de la materia (MCM), que surgen de las investigaciones anteriores, permite diseñar las estrategias de intervención –enseñanza– y señalar los indicadores a partir de los cuales se podrá valorar lo que ocurre con la representación inicial.

En los antecedentes señalados anteriormente, el centro de atención estuvo en las representaciones de los estudiantes sobre el MCME respecto a diferentes temáticas y a cómo se explicitan según las tareas que se les proponen.

También hay autores y proyectos que aportan datos relevantes respecto al impacto de la implementación de ciertas estrategias de enseñanza. Algunos ejemplos se presentan en el cuadro que sigue, elaborado con los aportes de Trinidad-Velasco y Garritz (2003).




En términos generales se puede decir que hay acuerdo en que las concepciones de los estudiantes deben explicitarse de algún modo, la nueva idea debe ser presentada y *puesta en uso* para poder ver su eficacia. La clave es pensar que la enseñanza propondrá una nueva manera de mirar el fenómeno. La característica de cada propuesta estará dada por las formas de explicitación de las ideas del sujeto, los recursos para presentarlas y las maneras de ponerlas en uso. Según Gil y Carrascosa (1985), muchos docentes asumen el tratamiento del tema de forma superficial, que difícilmente impacte del modo que se está solicitando.

El tema de la enseñanza respecto al MCME no solo pasa por definir una secuencia adecuada, sino por cuándo y cómo iniciar el tema. Es así que la mayoría de los estudios que indica la bibliografía en los últimos tiempos, marcan que los sujetos investigados mayoritariamente son de educación secundaria, dado que es cuando tradicionalmente aparece el tratamiento del tema.

Valcárcel, Sánchez y Ruiz sostienen que es inútil y sin sentido introducir al alumno a la teoría atómica –cercana a la de la ciencia erudita, que es la forma en la que se presenta generalmente en la Educación Media– mientras los alumnos le sigan atribuyendo su carácter continuo.

«Por tanto, compartimos con Johnson (1998) que el estudio de la teoría atómica y los modelos atómicos no debe abordarse hasta que los alumnos hayan construido, como mínimo, un modelo de la naturaleza corpuscular que contemple que cada sustancia está constituida por partículas diferentes, que entre ellas no hay nada y que las propiedades de una sustancia son debidas a la colectividad de partículas.» (Valcárcel, Sánchez, Ruiz, 2000:87)



Alientan esta idea los aportes de Novak y Musonda (1991), citados por Trinidad-Velasco y Garritz (2003:100), quienes señalan que «...los niños a quienes se ha impartido, a una edad joven, una introducción cuidadosamente controlada de concepciones científicas más bien complejas, tienen un marco conceptual más adecuado para los cursos posteriores».

En un trabajo reciente, Giudice y Galagovsky (2008) muestran cómo afecta en la capacidad de modelización, la existencia o no de una explicación previa por parte del docente, y la naturaleza de dicha explicación. Esta evidencia lleva a reflexionar sobre la influencia de los estilos de enseñanza en la construcción de ciertos tipos de conocimiento.

La temática del MCM no escapa a estas ideas. Para comunicar el modelo a los estudiantes se suelen utilizar diferentes estrategias, pero todas coinciden en que es el docente (o un manual) el que debe hacer su presentación. Para ello suele valerse de una variada gama de representaciones didácticas que involucran complementariamente diferentes lenguajes: verbales, gráficos, visuales, matemáticos, etcétera. Galagovsky ha liderado en Argentina estudios sobre este aspecto, en trabajos compartidos con diferentes investigadores en 2003, 2005 y 2008.

También existe bibliografía que muestra diferentes postulados para el MCM de ciencia escolar. Entre ellos el de Wobbe de Vos y Adri H. Verdonk (citado por Prieto y Blanco, 2000:77) y el de Kauderer (1999:228).

Pozo y Gómez Crespo (1998) nos recuerdan una y otra vez, que no basta con proponer a los niños un modelo explicativo mejor, habría que hacerles ver que es mejor. Esto supone que en las actividades de enseñanza, luego de su presentación, el modelo debe ponerse en uso y ganar credibilidad. No basta con introducir la idea, es necesario que sea creíble y útil.

El trabajo con el modelo corpuscular en el aula escolar no debería tener un fin en sí mismo. Importa en la medida en que posibilita abordar lo que es un modelo científico para la ciencia. Mostrar a los niños como un modelo es algo que se define, y que permite dar explicaciones y predicciones. El modelo no es algo en lo que los niños tengan que creer porque sí. El modelo gana credibilidad ante ellos en la medida en que, como idea nueva, ante diversas situaciones, pueda ser el marco explicativo para las mismas.

Y es ese ejercicio, el de poner a prueba el modelo en su versión escolar, el que entendemos que puede ser importante en el desarrollo cognitivo de los niños, porque supone verdaderos desafíos a su comprensión.

## Cuando en el modelo escolar incluimos al vacío

La inclusión de vacío en el MCME supone un paso más en la complejidad señalada en los ítems anteriores. Es de hacer notar que la dupla corpúsculo-vacío forma parte de la idea original. El modelo sería: todo está formado por corpúsculos en permanente movimiento chocando entre sí, con vacío entre los corpúsculos. Esto supone que la materia se compone de partes (corpúsculo-vacío) y de cosas que pasan entre esas partes (los corpúsculos se mueven, chocan, se disponen de maneras variadas, el espacio vacío entre ellos puede aumentar, o disminuir, etc.).

Desde la experiencia pensamos que en los niveles superiores ya se debería incluir la noción de vacío en el modelo, tal como se señala en el párrafo anterior: como paquete junto al corpúsculo.

### El MCME puesto en uso en los contenidos escolares

Entre otros clásicos contenidos escolares, el modelo permitiría trabajar ideas como las que se expresan a continuación.

- Una sustancia se diferencia de otra en la naturaleza de los corpúsculos que las conforman.
- Los corpúsculos pueden presentar disposiciones espaciales diferentes dando lugar a lo que llamamos estados, y si cambiamos las condiciones podemos cambiar de estado.
- Los corpúsculos pueden frente a otros mezclarse o no, reaccionar o no.

#### **Finalmente**

A los efectos de cerrar estas notas, recuperamos las palabras de Adúriz-Bravo e Izquierdo-Aymerich (2009), presentadas en un artículo que a nuestro entender cobra importancia con el tiempo. Entendemos que las ideas que a continuación se transcriben, justifican en buena medida lo expuesto en el artículo que estamos presentando.

«Cuando los profesores y profesoras de ciencias naturales nos hacemos conscientes de las decisiones a tomar en nuestro trabajo y queremos fundamentarlas, compararlas con las de otros profesores, establecer prioridades entre ellas, gestionarlas para llegar a los fines deseados y comunicarlas a nuestros colegas, encontramos que necesitamos de nuevos conocimientos (provenientes de la epistemología o filosofía de la ciencia, de la pedagogía, de la ciencia cognitiva, de la lingüística y de tantas otras disciplinas); esos conocimientos se "trenzan" con los de las disciplinas científicas a enseñar para diseñar una auténtica actividad científica escolar (...) en nuestras clases. [...]

Consideremos primero cuatro significados de la idea de modelización en las ciencias naturales (...):

- 1. La modelización es el proceso de creación de modelos científicos originales, novedosos respecto del cuerpo de conocimiento establecido en un determinado momento histórico.
- 2. La modelización consiste en la construcción de argumentaciones en las que se subsumen los hechos científicos investigados bajo modelos disponibles que sean capaces de explicarlos o de dar cuenta de ellos.
- 3. La modelización supone el ajuste de los modelos establecidos a causa de la aparición de nuevos datos "anómalos" durante la investigación, como resultado del contraste por medio de las hipótesis teóricas.
- 4. La modelización contiene también el "ejercicio" intelectual de aplicar modelos ya existentes a explicar hechos ya estudiados en un entorno de enseñanza y formación.

[...]

Estructurar la actividad científica escolar alrededor de modelos teóricos permitiría recrear en clase un saber disciplinar que es patrimonio de todos y todas, pero que se debería enseñar sólo en tanto que posibilite que los sujetos comprendan el funcionamiento del mundo natural (...). Esta recreación, auxiliada por el profesorado y por los textos, no se plantea entonces como un "redescubrimiento" de ideas complejas que llevaron siglos de arduo trabajo a la humanidad, sino como una apropiación -profundamente constructiva- de potentísimas herramientas intelectuales que se van representando en el aula con el nivel de formalidad necesario para cada problema y cada momento del aprendizaje.» (Adúriz-Bravo e Izquierdo-Aymerich, 2009:41, 46, 47) Q



#### Referencias bibliográficas

ADÚRIZ-BRAVO, Agustín; DIBARBOURE, María; ITHURRALDE, Sylvia (coords.) (2013): El quehacer del científico al aula. Pistas para pensar. Montevideo: FUM-TEP/Fondo Editorial OUEDUCA.

ADÚRIZ-BRAVO, Agustín; GARÓFALO, Judith; GRECO, Marcela; GALAGOVSKY, Lydia; (2005): "Modelo didáctico analógico. Marco teórico y ejemplos" en *Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas*, Número Extra, VII Congreso Internacional sobre la Investigación en Didáctica de la Ciencias. En línea: http://ddd.uab.cat/pub/edlc/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a2005nEXTRA/edlc\_a200

ADÚRIZ-BRAVO, Agustín; IZQUIERDO-AY-MERICH, Mercè (2009): "Un modelo de modelo científico para la enseñanza de las ciencias naturales" en *Revista Electrónica de Investigación en Educación en Ciencias*, Año 4, Número Especial 1, pp. 40-49. En línea: http://www.scielo.org.ar/pdf/reiec/nesp/nespa04.pdf

ANEP. CEP. República Oriental del Uruguay (2009): *Programa de Educación Inicial y Primaria. Año 2008*. En línea (Tercera edición, año 2013): http://www.cep.edu.uy/archivos/programaescolar/ProgramaEscolar\_14-6.pdf

BACHELARD, Gaston (1994): La formación del espíritu científico. Contribución a un psicoanálisis del conocimiento objetivo. México: Siglo xxI editores, 20ª edición (1ª edición en español: 1948, Buenos Aires: Ed. Argos).

BAQUERO, Ricardo (1997): Vigotsky y el aprendizaje escolar. Buenos Aires: Aique Grupo Editor.

BENLLOCH, Montse (1997): Desarrollo cognitivo y teorías implícitas en el aprendizaje de las ciencias. Madrid: Ed. Visor.

DIBARBOURE, María (2007a): "La materia... un desafío para la enseñanza escolar" en *QUE-HACER EDUCATIVO*, N° 83 (Junio), pp. 28-31. Montevideo: FUM-TEP.

DIBARBOURE, María (2007b): "Ordenando ideas... Sobre la composición de la materia. Sobre la noción de vacío" en *QUEHACER EDU-CATIVO*, Nº 86 (Diciembre), pp. 160-164. Montevideo: FUM-TEP.

DIBARBOURE, María (2009a): "Las situaciones de enseñanza como objeto de análisis" en J. Leymonié Sáenz; O. Bernadou; M. Dibarboure; E. Santos; I. Toro: Aportes para la enseñanza de las Ciencias Naturales. Segundo Estudio Regional Comparativo y Explicativo. Santiago de Chile: UNESCO. En Iínea: http://unesdoc.unesco.org/images/0018/001802/180275s.pdf

DIBARBOURE, María (2009b): "Pensar la enseñanza de las ciencias, reflexiones siempre en borrador" en *IV Foro Latinoamericano de educación. Aprender y enseñar ciencias. Desafíos, estrategias y oportunidades.* Buenos Aires: Fundación Santillana.

DIBARBOURE, María (2009c): ...y sin embargo se puede enseñar ciencias naturales. Montevideo: Ed. Santillana S. A. Serie Praxis. Aula xxI.

DIBARBOURE, María (2010): "La naturaleza de la ciencia como contenido escolar" en *QUE-HACER EDUCATIVO*, Nº 100, Edición Especial (Abril), pp. 110-120. Montevideo: FUM-TEP.

DIBARBOURE, María (2011a): "Pensando en los contenidos de QUÍMICA de la propuesta curricular... ¿Qué nos proponemos que los niños aprendan?" en *QUEHACER EDUCATIVO*, Nº 107 (Junio), pp. 54-63. Montevideo: FUM-TEP.

DIBARBOURE, María (2011b): "Seminario Internacional de Cambio Conceptual" en *QUEHA-CER EDUCATIVO*, Nº 105 (Febrero), pp. 50-53. Montevideo: FUM-TEP.

DIBARBOURE, María (2013): "Enseñando Ciencias Naturales. Primera parte: ¿Qué sabemos del contenido que enseñamos? En busca de la profesionalización docente" en *QUEHACER EDUCATIVO*, N° 120 (Agosto), pp. 42-47. Montevideo: FUM-TEP.

DIBARBOURE, María (2016): "Preguntas investigables. Pensar sobre ellas y hacerlas posibles en la escuela" en *QUEHACER EDUCATIVO*, N° 139 (Octubre), pp. 44-49. Montevideo: FUM-TEP.

DRIVER, Rosalind; GUESNE, Edith; TI-BERGHIEN, Andrée (1989): *Ideas científicas en la infancia y la adolescencia*. Madrid: MEC / Ed. Morata.

DRIVER, Rosalind; OLDHAM, Valerie (1988): "Un enfoque constructivista del desarrollo curricular en el modelo sistémico investigativo" en R. Porlán Ariza; J. E. García Díaz; P. Cañal de León (comps.): Constructivismo y enseñanza de las ciencias, pp. 115-136. Sevilla: Díada Editora. Serie Fundamentos.

DRIVER, Rosalind; SQUIRES, Ann; RUSH-WORTH, Peter; WOOD-ROBINSON, Valerie (1999): "Partículas" en *Dando sentido a la ciencia en secundaria. Investigaciones sobre las ideas de los niños*, pp. 127-133. Madrid: Aprendizaje Visor.

FEYNMAN, Richard P. (1997): "¿Qué es ciencia?" (Reproducción textual del libro Seis piezas fáciles. La física explicada por un genio. Barcelona: Crítica, realizada por el Departamento de las Ciencias y las Artes, Epistemología e Historia de la Física, Facultad de Educación, Universidad de Antioquia). En línea: http://cecabogota.pbworks.com/w/file/fetch/46139955/art\_Que\_es\_Ciencia\_Richard%20Feynman.pdf

FURMAN, Melina (2016): Educar mentes curiosas: la formación del pensamiento científico y tecnológico en la infancia. Documento básico. XI Foro Latinoamericano de Educación. Buenos Aires: Santillana. En línea: http://conocimiento-educativo.com/wp-content/uploads/2016/08/XI-Foro-Documento-basico-WEB.pdf

GALAGOVSKY, Lydia R.; RODRÍGUEZ, María Alejandra; STAMATI, Nora; MORALES, Laura F. (2003): "Representaciones mentales, lenguajes y códigos en la enseñanza de Ciencias Naturales. Un ejemplo para el aprendizaje del concepto de reacción química a partir del concepto de mezcla" en Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, Vol. 21, Nº 1, pp. 107-121. En línea: http://www.raco.cat/index.php/Ensenanza/article/view/21898/21731

GIL PÉREZ, Daniel; CARRASCOSA ALIS, Jaime (1985): "Science learning as a conceptual and methological change" en *European Journal of Science Education*, Vol. 7, pp. 231-236. En línea: https://www.researchgate.net/publication/303471615\_Science\_Learning\_as\_a\_conceptual\_and\_methodological\_change

GIUDICE, Jimena; GALAGOVSKY, Lydia (2008): "Modelar la naturaleza discontinua de la materia: una propuesta para la Escuela Media" en *Revista Electrónica de Enseñanza de las Ciencias*, Vol. 7, N° 3, pp. 629-657. En línea: http://reec.uvigo.es/volumenes/volumen7/ART8\_Vol7\_N3.pdf

KAUDERER, Mirta (1999): "De la química que enseñamos a la que queremos enseñar" en M. Kaufman; L. Fumagalli (comps.): Enseñar ciencias naturales. Reflexiones y propuestas didácticas. Buenos Aires: Ed. Paidós.

NUSSBAUM, Joseph (1989): "La tierra como cuerpo cósmico" (Cap. IX) en R. Driver; E. Guesne; A. Tiberghien: *Ideas científicas en la infancia y la adolescencia*, pp. 259-290. Madrid: MEC / Ed. Morata.

OSBORNE, Jonathan (2002): "Hacia una educación científica para una cultura científica" en M. Benlloch (comp.): *La educación en ciencias: ideas para mejorar su práctica*, pp. 31-68. Barcelona: Ed. Paidós Educador.

PAPP, Desiderio (1996): Historia de las Ciencias. Desde la Antigüedad hasta nuestros días. Santiago de Chile: Ed. Andrés Bello.

POZO, Juan Ignacio; GÓMEZ CRESPO Miguel Ángel (1998): Aprender y enseñar ciencia. Del conocimiento cotidiano al conocimiento científico. Madrid: Ed. Morata.

POZO, Juan Ignacio; GÓMEZ CRESPO Miguel Ángel (2002): "Más allá del 'equipamiento cognitivo de serie': La comprensión de la naturaleza de la materia" en M. Benlloch (comp.): La educación en ciencias: ideas para mejorar su práctica, pp. 235-264. Barcelona: Ed. Paidós Educador.

POZO, Juan Ignacio; GÓMEZ CRESPO Miguel Ángel; GUTIÉRREZ JULIÁN, María Sagrario (2004): "Enseñando a comprender la naturaleza de la materia: el diálogo entre la química y nuestros sentidos" en *Educación Química*, Vol. 15, N° 3 (Julio), pp. 198-209. En línea: educacionquimica.info/include/downloadfile.php?pdf=pdf789.PDF

PRIETO RUZ, Teresa; BLANCO LÓPEZ, Ángel (2000): "Visión escolar de la naturaleza y estructura de la materia" en *Alambique*. *Didáctica de las ciencias*, Nº 26 (Octubre, Noviembre, Diciembre), pp. 75-82. Barcelona: Ed. Graó.

SÁNCHEZ RON, José Manuel (2000): *El Siglo de la Ciencia*. Madrid: Taurus.

TRINIDAD-VELASCO, Rufino; GARRITZ, Andoni (2003): "Revisión de las concepciones alternativas de los estudiantes de secundaria sobre la estructura de la materia" en *Educación Química*, Vol. 14, N° 2, pp. 92-105. En línea: andoni.garritz.com/documentos/trinidad-garritz.pdf

VALCÁRCEL PÉREZ, María Victoria; SÁN-CHEZ BLANCO, Gaspar; RUIZ ROJAS, Manuel (2000): "El estudio del átomo en la educación secundaria" en *Alambique*. *Didáctica de las ciencias*, Nº 26 (Octubre, Noviembre, Diciembre), pp. 83-94. Barcelona: Ed. Graó.