

La autosuficiencia: microtúneles e hidroponias

Marcio Yoel Farías Clames | Maestro. Tacuarembó

El año pasado, nuestra institución se presentó en la Feria Departamental de Ciencia y Tecnología, y fue la única escuela pública y rural en participar en nuestro departamento. Para sorpresa nuestra obtuvimos la mención especial con el proyecto: "Vivir del campo: la vida hacia la autosuficiencia", pudiendo así lograr participar en la Feria Nacional. En esta última se nos otorgó la mención al cuaderno de campo.

Este año continuamos con la línea de ese trabajo y nos presentamos nuevamente en la Feria Departamental, donde por segundo año consecutivo recibimos la mención especial y la posibilidad de exponer nuestro proyecto en la Nacional.

Estos trabajos son de gran relevancia, ya que permiten: en los niños, despertar su espíritu científico, relacionarlos con pares de otras instituciones y departamentos, responsabilizarse y tomar como propias sus tareas, aprender sobre diferentes conceptos y metodologías; en los docentes, interactuar e intercambiar con otros, relacionar una gran cantidad de contenidos programáticos trabajándolos desde el proyecto; en la comunidad, involucrarse en la tarea, experimentar y/o aplicar el trabajo que realizan los niños, entre otros.

Los objetivos de ambos proyectos siempre fueron expandirlos a la sociedad. Eso lo hicimos sobre la base de publicaciones y exposiciones. Es por eso que, en esta ocasión, les presento el proyecto de este año, como forma de difundir el gran trabajo que han realizado los niños.

Introducción

En el año 2011 se presentó un proyecto en el cual se planteaba la idea de autosuficiencia desde el punto de vista de la vida en el campo. En este sentido se construyó una maqueta que representaba una finca de media hectárea, donde se plasmaba esta idea de autoabastecimiento. En ella se podía observar y deducir la diversidad de tareas que se podían hacer para ser autosuficiente; por ejemplo: producción de alimentos orgánicos desde una huerta o invernáculo, obtención de frutos a través de una plantación de árboles frutales, cría de animales para la elaboración de alimentos y generación de dinero para gastos, obtención de energía a partir de paneles solares y bioconstrucciones. Esto, a grandes rasgos pero, en realidad, la idea era que cada elemento de la maqueta tuviera una funcionalidad autosuficiente, desde una naranja, pasando por los desperdicios de la cocina, hasta la rama de un árbol.

Es así que una de las sugerencias realizadas por los evaluadores fue la de centrarnos y profundizar en un área de esa maqueta, en un aspecto, en una parte.

Entonces, luego de una charla con el grupo (donde se analizó lo que teníamos en el predio escolar en coincidencia con la maqueta), se decidió trabajar en el invernáculo, elemento con el cual ya teníamos experiencia de trabajo. Pero este, al poco tiempo, fue destruido por una tormenta; por lo cual nos surgió el problema de cómo íbamos a producir hortalizas en forma autosuficiente en la época invernal. Dentro de las posibilidades mencionadas estuvo la de cubrir la plantación con un *nylon*.

Surgió la idea de hacer microtúneles. Pero también se mencionó la posibilidad de que estos no funcionaran, por lo que se propuso la iniciativa de hacer también hidroponias. Nos planteamos la siguiente hipótesis: la construcción de microtúneles e hidroponias posibilitará la

producción de hortalizas en invierno en forma autosuficiente sin tener invernáculo.

Nuestros objetivos al respecto fueron:

- 1. Producir hortalizas en el invierno en forma autosuficiente, a través de los sistemas de microtúneles e hidroponias.
- 2. Conocer y comparar los beneficios de estos sistemas de cultivo.

Materiales y métodos

Teniendo claro qué era lo que íbamos a hacer, se decidió comenzar por aprender sobre los dos sistemas de cultivo. Para ello buscamos información: en libros de huerta orgánica, en bibliografía virtual de internet, preguntando a los vecinos de la zona y a personas idóneas en el tema.

Luego de esto se recibió colaboración de familiares de los niños y se comenzaron a construir, en primera instancia, los microtúneles. Para ello fuimos a la granja (al fondo de la escuela), cortamos tacuaras, las desgajamos, las cortamos y las clavamos, en forma de arco, sobre los canteros que habíamos armado un rato antes.

Posteriormente tomamos el *nylon* del invernáculo roto, lo cortamos y lo colocamos sobre las tacuaras. A continuación lo apretamos en las puntas, clavándole una tacuara y luego apretando los bordes con postes pesados. De esta forma quedaron construidos tres microtúneles: uno grande de 7 m y otros dos de aproximadamente 3 m cada uno. También se hicieron dos almacigueras a un costado.

Luego de esto se pasó a diseñar la siembra. Para la misma se eligieron tres hortalizas de hoja y tres de raíz, de forma de tener diversidad en el ecosistema productivo. A uno de los microtúneles pequeños lo dividimos en tres para el repollo, la acelga y la lechuga; al segundo, también en tres, para la zanahoria, la remolacha y el rabanito. Al grande lo dividimos en seis y se sembraron las especies mencionadas.

Diseño de plantación		
	Entre plantas	Entre hileras
Lechuga	20 cm	30 cm
Repollo	30 cm	50 cm
Zanahoria	10 cm	25 cm
Remolacha	15 cm	40 cm
Acelga	20 cm	50 cm
Rabanito	5 cm	15 cm

En las almacigueras se plantó de la misma manera que en los canteros chicos, pero a menor distancia entre semillas e hileras. Para ello se tuvo en cuenta un cuadro de plantación que informa a qué distancia tienen que estar las hileras de siembra y las semillas. También se calculó cuántas semillas se debían plantar en cada cantero. Después de esto se regaron y se taparon los microtúneles con el *nylon* corredizo.

Días después se preparó un repelente a base de ajo y aceite, ya que las hormigas comenzaban a invadir los canteros.

Luego de sucesivos riegos se empezó a notar la germinación de algunas semillas, por lo que se anotaron las medidas de dichas plántulas, además de las temperaturas internas de los microtúneles. En el transcurso se los aireaba levantando el *nylon* según el momento del día y como estuviera el tiempo.

Posteriormente se comenzaron a estudiar en profundidad las hortalizas que se habían plantado. Empezamos informándonos sobre la acelga.

Un par de días después se construyeron los germinadores que darían vida a las semillas que pasarían a formar parte de las hidroponias.

Se volvió a retomar la información obtenida sobre este sistema de cultivo y se investigó más en profundidad. En este sentido nos dimos cuenta de que el fertilizante que deberíamos usar para ello, lo tendríamos que comprar e iba a ser químico. Consultamos con algunos ingenieros y nos informamos sobre este problema, pero no encontramos solución.

Fue entonces que decidimos hacer dos tipos de hidroponias: una con nutrientes químicos comprados y otra con un fertilizante preparado por nosotros, que contendría jugo de banana y ortiga hervida, y hueso quemado o fosforita. Para llegar a esa idea nos informamos sobre los macronutrientes que necesitan las plantas.

La autosuficiencia: microtúneles e hidroponias

Posteriormente se iban haciendo observaciones y registros de los germinadores construidos; sin descuidar el cuidado de los microtúneles en cuanto a: control de temperatura (aireación) y control de humedad (riego).

Lo siguiente que se realizó fue la primera cosecha en los microtúneles. Se obtuvo una producción de rabanitos muy importante, a los que se observó, midió, fotografió y vendió.

Luego, cuando las plantas de los germinadores ya estaban prontas, se pasó a armar las hidroponias. Primeramente se midió el volumen de cada recipiente para calcular la cantidad de fertilizante que se le agregaría. Inmediatamente se comenzó con la construcción, colocándoles *nylon* negro (por el tropismo), *espuma plast*, agua y fertilizante. Se construyeron tres hidroponias: una con fertilizante químico comprado (en la cual se colocaron cuatro tipos de hortalizas, dos de hoja y dos de raíz); otra con jugo de ortiga, banana y hueso quemado; y otra con jugo de ortiga, banana y fosforita.

Al día siguiente y posteriores se comenzó con el cuidado de las mismas: oxigenando el agua dos veces por día, cambiando el agua y el fertilizante cada quince días y tomando la temperatura para su mantenimiento.

Después continuamos con el estudio de las hortalizas sembradas, como el rabanito y la remolacha.

También se prosiguió con la cosecha de plantas que ya estaban prontas en los microtúneles. Y se realizó una nueva siembra en aquellos espacios, en los canteros, que quedaron libres.

En cuanto a la hidroponia, teniendo en cuenta observaciones que se hicieron en relación al crecimiento y desarrollo de las plantas, se decidió replantear algunos procedimientos y métodos para obtener mejores resultados, ya que las plantas, luego de un buen desarrollo inicial, terminaban marchitándose.

Cabe mencionar también que se elaboraron boletines, mes a mes, informando sobre los temas tratados, las investigaciones y actividades realizadas en el proyecto. Los mismos fueron difundidos en la comunidad y se pretende ampliar esta difusión.

Resultados

Los resultados los dividiremos en dos partes, unos tienen que ver con los microtúneles y otros con las hidroponias.

Los que tienen que ver con los microtúneles:

- Se construyeron los microtúneles con materiales existentes en la escuela, sin necesidad de comprar.
- Se pudo hacer el cuidado de los mismos con elementos también existentes en la escuela o conseguidos mediante donación.
- Se cosecharon hortalizas en forma más temprana, con mayor calidad y una excelente producción en cuanto a cantidad de verduras obtenidas; todo esto en la época invernal.
- 4. Se obtuvieron ganancias por la venta de las mismas
- 5. Logramos la efectividad en cuanto al control de plagas.

La autosuficiencia: microtúneles e hidroponias

Los que tienen que ver con las hidroponias:

- Se construyeron las hidroponias con materiales existentes en la escuela, pero con la necesidad de comprar algunos (nylon y fertilizante).
- 2. Se pudo hacer el mantenimiento con elementos existentes en la escuela.
- Obtuvimos el crecimiento de hortalizas tanto de raíz como de hoja hasta cierto punto de desarrollo; luego se producía un marchitamiento.
- 4. Se logró el funcionamiento parcial del fertilizante químico.
- 5. Logramos el funcionamiento parcial del fertilizante orgánico inventado.
- 6. No se obtuvo cosecha ni venta de hortalizas por el marchitamiento en pleno desarrollo de las mismas.
- 7. Ante la efectividad, en cierto punto, de los fertilizantes, se replantearon las variables para realizar nuevamente el sistema hidropónico.

Discusión y conclusiones

Microtúneles

Los resultados fueron muy favorables en lo que tiene que ver con los microtúneles. Se logró ser autosuficiente, ya que los materiales con los que se construyeron fueron obtenidos en la escuela. Además se contribuyó con los vecinos de la zona, quienes se sintieron motivados en colaborar con la construcción de los mismos.

Comprobamos la efectividad de los microtúneles, pues se logró una producción muy buena de hortalizas, en forma temprana y de gran calidad, teniendo en cuenta las heladas y el frío del invierno.

Al lograr una gran cosecha (rabanitos, acelgas, lechugas, remolachas, repollos) se pudo vender y obtener dinero para algún gasto que pudiera surgir.

También se comprobó que este sistema de cultivo reduce la aparición de plagas. Solamente tuvimos algunos problemas con las hormigas, pero inmediatamente se preparó un repelente a base de ajo y aceite, y pudimos combatirlas.

Hidroponias

En lo que tiene que ver con las hidroponias, los resultados fueron buenos, pero hubo que hacer un replanteamiento en cuanto a algunas variables.

En primera instancia se comenzó siendo autosuficiente, ya que si bien hubo que comprar algunos materiales, en su momento se pensó que sería solamente una inversión.

Después, al no obtener cosecha, terminó siendo casi una pérdida; casi, porque se repuso lo gastado con el dinero obtenido de la venta de hortalizas de los microtúneles.

El replanteamiento surge porque las plantas, luego de su transplante de los germinadores a las hidroponias, continuaban con su desarrollo, pero hasta cierto punto. El tema era que, pasados algunos días, las hojas comenzaban a marchitarse y terminaban muriendo. Las conclusiones que sacamos al respecto fueron que debíamos: controlar mejor el tiempo de iluminación de las plantas, oxigenar tratando de no mojar las hojas, colocarles mayor proporción de fertilizante químico y orgánico, cambiarles el agua y los fertilizantes cada 10 días.

Lo que sí se destaca como un logro importante en cuanto al trabajo con las hidroponias fue la invención y eficiencia parcial de un fertilizante a base de jugo de ortiga, banana hervida y hueso. Esto es de destacar, ya que ningún ingeniero y ningún material bibliográfico nos solucionaban el problema de conseguir un fertilizante hidropónico orgánico. En este sentido, la idea es seguir investigando sobre este producto para lograr su eficacia total.

Comprobamos también que en este sistema de cultivo se pueden sembrar hortalizas de raíz. Esto es porque, generalmente, lo que se hace es plantar lechugas o acelgas.

Sobre esta base, la idea ahora es: diseñar una nueva siembra en los microtúneles, continuar experimentando con el fertilizante orgánico y esperar que las semillas de los germinadores nazcan para transplantarlas a un sistema hidropónico reformulado.

Bibliografía

SEYMOUR, John (1978): Guía práctica ilustrada para la vida en el campo. El horticultor autosuficiente. Barcelona: Ed. Blume.

SEYMOUR, John (1979): Guía práctica ilustrada para la vida en el campo. Barcelona: Ed. Blume.

SEYMOUR, John (1980): Manual práctico de la vida autosuficiente. La conservación de alimentos y productos artesanales. Barcelona: Ed. Blume.